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Theory and Numerical Calculations for Radially
Inhomogeneous Circular Ferrite Circulators

Clifford M. Krowne, Senior Member, IEEE, and Robert E. Neidert, Member, IEEE

Abstract—This paper presents a new theory for the operation
of microstrip and stripline circulators, specially set up to permit
radial variation of all the magnetic parameters. A computer code,
taking only a few seconds per calculated point on a modest
computer, was developed from the theory, and calculated results
are given. In the theory we develop a two-dimensional (2-D)
recursive Green’s function  suitable for determining the electric
field E. anywhere within a microstrip or stripline circulator.
The recursive nature of G is a reflection of the inhomogeneous
region being broken up into one inner disk containing a sin-
gularity and N annuli. ¢ has the correct properties to allow
matching to the external ports, thereby enabling s-parameters
to be found for a three-port ferrite circulator. Because of the
general nature of the problem construction, the ports may be
located at arbitrary azimuthal angle ¢ and possess arbitrary
line widths. Inhomogeneities may occur in the applied magnetic
field H.,,, magnetization i7}l., and demagnetization factor
Ng. Al magnetic inhomogeneity effects can be put into the
frequency dependent tensor elements of the anisotropic perme-
ability tensor. Numerical results are presented for the simpler but
immensely practical case of symmetrically disposed ports of equal
widths taking into account these radial inhomogeneities. Studies
of breaking up the area into 1, 2, and 5 annuli are undertaken to
treat specific inhomogeneous problems. The computer code which
evaluates the recursive Green’s function is very efficient and has
no convergence problems.

I. INTRODUCTION

HE ferrite community has long needed a simple but

accurate way to calculate circulator performance in the
presence of radial variation of bias field, ferrite material type,
and demagnetizing factor. Full analysis with finite element
or finite difference methods is so slow, user-unfriendly, and
expensive that generally useful answers about the affects of
radial variations have not been forthcoming. The paper here
provides a means to get these answers, at the rate of a few
seconds per calculation point, with a computer code developed
from a new partial mode matching theory.

Previous work in the area of multiport circulators has
focused on the treatment of high-symmetry geometric con-
figurations, a limited number of symmetrically disposed ports,
and a homogeneous nonreciprocating medium [1]-[15]. The
theoretical techniques for modeling the circulator have ranged
from Green’s functions, boundary element methods, boundary
contour integral methods, to finite element methods. Each
method has special advantages and disadvantages in relation
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to the other methods, depending upon what the researcher
is interested in emphasizing in the problem. Discussion of
these numerical techniques as well as other information on
circulators and anisotropic media may be found in recent
surveys [16], [17].

Our interest is in obtaining a formulation which allows us to
inspect the physics and electromagnetics of the solution, and
which can be related to earlier simple results on homogeneous
problems. We also want a solution which is numerically
efficient to evaluate. With these considerations, an analytical
approach was taken to derive a Green’s function which would
allow the circulator region to be divided up into an arbitrary
number of rings of definite radial thickness. The idea was to
make the rings or annuli thin enough to accurately describe the
actual arbitrary radial variation of the various inhomogeneities
contributing to the permeability tensor.

In Sections II and III we develop a two-dimensional (2-
D) recursive Green’s function G suitable for determining the
electric field F, anywhere within the circulator. The recursive
nature of G is a reflection of the inhomogeneous region being
broken up into one inner disk, containing a singularity, and IV
annuli. G has the correct properties to allow matching to the
external ports, thereby enabling s-parameters to be found for
a three-port ferrite circulator. Because of the general nature of
the problem construction, the ports may be located at arbitrary
azimuthal angle ¢, and possess arbitrary line widths w, for the
ith port. The line widths may be also measured in terms of
the angular spread A¢, on the outer edge of the circular disk
of radius R. Inhomogeneities occur in the applied magnetic
field H,,,, magnetization 47w M,, and demagnetization factor
Ny. All magnetic inhomogeneity effects can be put into
the frequency dependent tensor clements of the anisotropic
permeability tensor. The process of how this can be done will
be discussed in Section V.

Section VI gives some calculated results for a few arbitrarily
selected cases of radially nonuniform demagnetizing factor,
applied bias field. and ferrite material types. These calculations
are for the immensely practical case of symmetrically disposed
ports of equal widths. Studies of breaking up the area into 1, 2,
and 5 annuli are undertaken to display the approximation levels
required to treat inhomogeneous problems. The computer
code, which evaluates the recursive Green’s function, is very

efficient and calculation time is presented.

II. THEORY

The Green's function to be developed below, although of
a recursive nature, may in the limit be shown to reduce to

0018-9480/96$05.00 © 1996 IEEE
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Fig. 1. Top view of a racdially inhomogenenus circulator showing the wnner
disk labeled with index number : = 0 and the annuli indexed from ¢ = 1
onward Here four annuli are shown. The figure shows the special case of
symmetrically disposed ports located at @ = —w/3 (input). /3 (output).
and 7 (1solated). Angular port width is A¢». A side view is shown also for
a real physical circulator. Biased fernite material of thickness H exists only
for r < R.

either the single circular disk case [18]. [19] or a circular ring
[20]-[22]. We develop the Green’s function as a response to a
forcing function which represents a driving function, or source
function, of magnetic field type, H,.. located on the azimuthal
boundary of a circular contour of radius E. Fig. 1 shows
the general geometric configuration of the circulator. The
forcing function has the property of limiting the field to finite
values only at radius r = R and azimuthal angle locations
¢ = ¢,, where 1 represents specific points along the enclosing
circulator contour. The linear system of partial differential
equations (PDE’s). through which Hys(r = R.¢ = ¢,)
imposes its forcing behavior, may be written formally in terms
of one governing PDE with operator L acting on our prime
field quantity of interest here, E.

LE.(r.¢) = Hys(R, $,). (1)

From FE., the other field components, H, and H,, can be
determined in this 2-D problem.

Let us identify the magnetic field at location » = R to be the
contour field associated with the surface in the 2-D problem
we are treating

Hy (R,¢) = Hyg(R, ¢) )

where an explicit subscript is added to denote this association.
H,. may be related to the physical forcing magnetic field
Hy, by the relation

d(r — R)Hy (R.$) = Hy, (R. ). 3)

Using the properties of the Dirac delta function in the spatial
radial direction and the azimuthal angular direction. we find

E.(r.¢) = / " Gon(rds R Hy (R &)dd . (4

i

It is the Green’s function Ggu(r, ¢; R, ¢') at r = R which
we are particularly interested in obtaining in this paper so that
the s-parameters may be found for the three-port inhomoge-
neous circulator. The recursion process to be employed here
is like that utilized for planar structures [23].

Maxwell’s sourceless curl equations are, for harmonic con-
ditions with phasor time dependence exp(iwt) assumed

VXE=-wB (5)
V x H=wD. (6)

These two equations are valid within the ferrite disk re-
gion which is considered to be inhomogeneously loaded with
material (the disk could also be a magnetically biased semi-
conductor region displaying the magnetoplasma effect). The
constitutive relationships are given generally by

B =/ H (7
D = ¢E. (®)

In the ferrite disk region, we will assume that the dielectric
tensor reduces to a scalar

£ =¢. (9)

Of course, this would not be the case for a semiconductor
where we would retain the tensor permittivity and drop the
tensor permeability [24], [25].

The general expression in matrix notation for the curl of an
arbitrary vector field in cylindrical coordinates is

1 7 7"(3 2

VXA=-10, 9y 8.

"4, rAs A,

where it is noted that the expansion of (10) is accomplished by
keeping the unit vector terms outside of the partial operators
d,,t = 7,¢,2. It is also noted that we use 7 instead of the
usual p for the cylindrical radius. For the 2-D problem we are
constructing, it is sufficient to drop a dimension by setting
d
Oz
To be somewhat consistent with notation in the circulator
literature [18]. we set the permeability tensor

10

—0. (11)

g —e 0
b= | 9 0 (12)
0 0 o
By (7) and (12)
o —in 0 H,
B=pgH= |ex 0| |H,
O O MO Hz
pd, — ik Hy
= | wH, + pHy (13)
MOH»:
Solving for Hy and H, in terms of partial derivatives of £,
1 e 0E~ OE
H = — =
1 1 OF, (?E’~
H=—— —“
w(p? — K2) [ 7 ()¢S } (15)
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The governing Helmholtz equation for this problem 1s

V?E. + k2E. =0 (16)

with the definitions
k2 = wepien (17
gt = =1 (18)

1

Using definition (18) in (14) and (15) provides substantially
more compact expressions for H, and H,

1 [ikl1OE. OE.
H, = oTE :
s weﬁ[w o9 ar] 9
1 1 0E, K OE,
T Wlker [F op | or } (20)

A. I, and H, Fields in the Inner Disk

The inhomogeneous circular surface is broken up into
one inner disk centered at r = 0, and N annuli, each
annulus labeled by index ¢. To be consistent in labeling
notation, the inner disk dis labeled with ¢ = 0. The disk,
and each annulus region is sourceless, so that the homoge-
neous Helmholtz equation (16) holds. The solution to (16) in
cylindrical coordinates is well known to be Bessel functions
multiplied by azimuthal circular harmonics. For the problem at
hand, azimuthal symmetry exists, requiring that the separable
circular harmonics be of type {exp(in¢)}, for any integer n.
Helmboltz equation (16) will therefore yield Bessel functions
of integer order. Because the inner disk contains the point
r = 0, the only Bessel function to be well behaved, not
possessing a singularity, will be the Bessel function of the
first kind, .J,,. Therefore the total electric field E.q in the disk
must be a superposition-of

E:nO - (I/nOJn(kefﬂOT)én(b (21)
giving
EzO - Z EznO
= > anodulkemor)e™. (22)
Likewise for the magnetic fields, invoking (19)
al 1
Hyo = - tn
0= Y =g
vg 1
X l:keff.OJ:z(keﬂﬂOT) - m_Jn(keff,OT):l eangb.
Ho T
(23)

To standardize the notation, abbreviate, and make transparent
what is happening in the recursion process itself, a few
definitions are made (the upper index on C is the component,
and the lower indices are azimuthal mode number, field type,

Bessel function type, and ring index)
Cneui(,r) = Jn(keﬂ,ir)
¢

Wlteff, ¢

(24)
(25)

C, = —

nk, 1

C’fhm('r) = keﬂ'.»,/J,;l(keﬂ‘, ,7‘) - ‘;Jn(keﬂ" ,'7“):, . (26)

1
In these three definition equations, the general disk or annulus
location index ¢ has been used as the last index on the Cjeas
and C,pq,, on the material tensor element parameters u;
and x,, and on the effective propagation constant k.g,, and
permeability pes,,. For the inner disk, the index in (24)-(26)
is merely i = 0, allowing us to rewrite (22) and (23) as

Exo= Y n0Cheao(r)e™ 27)
Hyo = Z anOCffhaO(T)em‘i’. (28)

B. Fields in the Annuli

Because an annulus does not include the origin, a superpo-
sition of any two linearly independent Bessel functions will be
required to construct the radial part of the separable solution
to (16). The electric field is therefore

E, = Z [aann(keﬁ',zT) + men(keﬁ,,r)]emﬂ
i=1,2,...,N. (29)
As in (24), let us define
C"eb,j(?") = Nn(keﬁ', ir) (30)

so that (29) can be rewritten in the more abbreviated and
transparent form

E.= z [aniani(?") + bmcnebz(r)]emé;
n=—o00
i=1,2,....N. 3D
For the H,, field component, referring to (19)
H¢i = Z Ciln; |:]‘effLJ; (keff,ir)
-1 .
— Tk _Jn(keff, L"I"):l Em(b
. T
+ Z cibni [keff.ierl(keﬁ‘siT)

nkK;

1Nn(keﬂ,n»>] e (32)
H, T

Using the coefficient definition in (26) for the a,, factor and
the additional definition
Nk, 1

Clar) = it N, o) = 222N ) | 63)

H,; can be expressed in the much more compact form

Hy = i [O’MCShm(T) + bniofhbz(T):l e,

n=—oo

223

(34)
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C. Boundary Conditions and the Disk—First Annulus Interface

There are three distinct types of boundary condition inter-
faces. The first boundary condition type is at the disk—first
annulus interface. This interface must match the inner disk,
which contains a potential singularity at r = 0 which has
been specially excluded, to the first annulus which contains
two linearly independent Bessel functions out of which the
E. field is constructed.

Once the matching has been completed at this first in-
terface, the field information can be pulled through to the
next interface, and the matching procedure repeated. Thus,
each internal interface due to two adjacent annuli involves the
same matching process. These internal interfaces constitute the
second type of boundary condition. If there are /V annuli, then
there will be exactly N, = N —1 interfaces of the second type.

The third type of boundary condition occurs at the interface
between the last annulus, the ¢ = N annulus, and the external
part of the circulator geometry. This is where the last annulus
or ring abuts or touches either an ideally imposed magnetic
wall, which approximately expresses the transition between the
ferrite material and the outside dielectric (air or a surrounding
dielectric), or the transition ports taking energy into or out
of the circulator. For a three-port circulator, these ports are
referred to as the input port, the output port, and the isolated
port. Normal practical design strategy attempts to minimize the
exiting signal from the isolated port and maximize the exiting
signal from the output port.

There will be a total of N, + 2 interfacial boundary condi-
tions, all of the internal ones plus one disk-annulus interface
and one Nth annulus-outside interface. The inner disk has
radius 7. Each annulus has radius ~, measured from its center.
The width of each annulus is Ar; = r;o — r,7. where the
subscript “O™ or “I™ indicates outer or inner radius of the ith
annulus.

It is sufficient to apply boundary constraints on either the
(Bn.D») normal pair or the (F}, H;) tangential pair. We
choose the second pair as it is easily applied. For the first

type of interfacial boundary condition
Eo(r =r0) = E.(r =7117)
H¢O(7' 7'0) = H¢1(7' = 7‘1[).

Using (27) and (31) for the I, constraint, (35) becomes

(35)
(36)

Il

ae)

Z anﬂcnenowlu)elndj

n=—oc

= Z (@01 Creat (r1r) + b1 Crep1 (rir)]e’™® (37)
Utilizing (28) and (34) for the H{, constraint, (36) becomes

~C

5 oChotrale™

n=—o0

e

= Z \:U'nlcfhal(r11> + bnlehbl(TlI)i} e (3%)

n——oc
By the orthogonality of the azimuthal harmonics on (—, 7),
these equations may be written down for each individual nth

harmonic

(39a)
(39b)
Here the argument information of the C coefficients has been
compressed into a single added subscript index [) which
denotes radial evaluation at the disk radius D — rg = rq5.

Solution of (39) vields for the Ist annulus field coefficients
anl and bnl

anOC'neaUD = anlcnealD + bnlCncle

@ o 2] ¢
anoChpaon = @1 Chngip + 0n1Coppip-

CncaOD C'nele
Crhaop  CnrbiD
Gp1 = (no (40a)
1
Oﬂ@ulD Onele
CnhalD Onhle
C’nealD C'neaOD
GnhalD CnhaOD
by = - (40b)
n ¢ r
Cneu 1D Cneh 1D
CnhalLJ Onhle

These expressions may be considerably abbreviated by defin-
ing the disk-to-annulus coupling numerator factors

Cheaop  ChebtD
Mpa, = , . 41a
pa CV'n,haOD Cnhle ' ( )

y _ OnealD OneaOD
Mpav = ‘CnhalD Cnhaon (41b)

and the determinant D, providing the information in the sth
annulus

Cy'nebzA

. 42
CnhbzA ( )

- Cneaz:l
D, =
Onhu 1A

In (42), subscript combination ¢4 denotes a radial evaluation
at the 4th annulus inner radius r,7. that is

Tvd =T =T, — AT.L/Q' (43)
Thus, we may now write a,; and b, as
Mp.1a
anl = g; ano (44&)
Mp as
bn1 = ——ano. 44b
1 D, @no (44b)

D. Intra-Annuli Boundary Conditions

The (E;, H;) tangential pair is used to match between two
adjacent annuli. Following forms (35) and (36)

(45)
(46)

Invoking the annuli £, field expression in (31), and inserting
it into (45)

E.(r=710)= E.ey(r = T(41)1)
Hy(r =71.0) = Hy(ig1) (7 = r(1y1)-

anzc(neaz(rrz(')) + bntcnebz(7'10)
= arL(L+1)Cnrzt(L+l)("(H—l)]) + bn(z+l)cneb(z+1)(7‘(z+1)1)-
47)

Similarly, for H, recalling (34), and inserting into (46)
ni Copg (1:0) + bn Oy (r10)

@ ¢
= (Ln(b+l)C,Lha(l+1)("(L+1)I) + bn(z—i—l)cfhb(wrl)(r(L+1)I)-
(48)
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These two equations may be compressed by defining the fifth
index on the C' coefficients to be the outer radius r;o of the
ith annulus or the inner radius r(;;.1y7 of the (7+1)th annulus.
This so defined radius is precisely the value used to evaluate
the radial arguments of the C coefficients

Ap, Cneaii + bnicnebu

= a/n(i+1)Cnea(i+1)L + bn(i+1)Cneb(i+1)i (493)
& @
a’nicnham + b"icnhbu
— ¢ [
= n(41) Oppaivr)i T O0na) Cpppgigr)ic (499)

This set of equations can be solved for the (¢ + 1)th annulus
field coefficients a, ;1) and by(,41)

L’nezz

thm

C’nea(7+l)1
Cnha(z—i-l)i

Oneb(z—{—-l)t
Cnhb(z+1)1

(50a)
Chreb(i+1i

Crhb(i+1)i
Lnezz
thzz

Cneb(z-l—l)z
nhb(241)2

An(t+l) = \

Onea(z—{—l)z
Cnhu(z-l—l)z

bnis1) = Creatros (50b)

nha(i+1)2

Here, left-hand equation information about the previous inner
sth annulus is stored in
Lnezz = aniCnPnu + bnicnebii
thm = (I'nzC

nhaill

(51a)

+ menhb” (51b)
The fifth index on the C coefficients represents the outer radius
r,0 of the inner annulus 7 or the inner radius 7(;11ys of the
outer annulus (i + 1).

Formulas (50) can be somewhat simplified by recognizing
that the denominators have already been defined in (42). The
fifth index A has now been replaced by the subscript ¢ denoting
the inner radius r(,.1); of the outer annulus (7 + 1) or the
outer radius r,o of the inner annulus ¢. Thus, the fifth index
represents the interfacial radius of the last two indices in the
new notation and so is a unique specification. Using the more
generally constructed determinant

Cneb(z+1)z
Cnhb(z-{—l)z

Cnea(z+1)z

Dop1 = (52)

Cnlza(z+1)1

the annulus field coefficients a,,(,+1) and by, (,41) look like

1 Lneu C b(a+1)
s - = neb(a+1)2 53a
(1+1) Dz+1 thu Cnhb(z+1)z ( )

1 Cnea(z-%lh Lnezz
On(s = — . 53b
(i+1) _DL+1 Cnha(l+l)1 thu ¢ )

These expressions implicitly contain forward propagating re-
cursion information from the previous annulus in the L,,.,, and
Lo terms. This information will now be explicitly inserted
from (51) into (53), factoring out the previous annulus field

cocfficients, so that explicit forward propagating recursion
formulas result

an(z-i—l)
1
= D_{[Cnhb(i+1)icneaii = Chep(i+1)iCnhaiilani
241
+ [Gnhb(z+1)zc’nebm - neb(z+1)iGnhbn]bm}
(54a)
bn(H—l)
1
= Dz-l—l {[Onea(1+1)zcnhaii - nha(i+1)icneaii]ani

+ [Cnﬁa,(i-}—l)ic'nhbn - nh,a(i-l—l)iCnebzz]bnz}'
(54b)

Each term within the square brackets in (54a) and (54b) is a
connection term linking the (¢ + 1) and ¢ annuli. Therefore
we define them as

aa(i +1 Z) = Cnhb(z+1)LCnean - neb(z—l»l)zcnhau (553)
/Ba (Z +1, 7) nhb(z+1)zOnebu - neb(z+l)zcnhbm (SSb)
ab(i +1 Z) nea z+1)zCnhau - nha(z—l—l)iOneau (55¢)
/Bb(Z +1 Z) nea(z-l—l)bonhbn — YUnha(i41) Chrebu. (55d)
With these assignments, the recursion expressions (54) are
1 . . . .
An(i+1) = '_{aa(l + 1. Z)am + ﬂa(l +1, l)bm} (56a)
by = =—{ow(i + 1,9)ani + Bp(i + 1,8)bni}.  (56b)

D+

Since the coupling terms a,(i + 1,i) and G,(i + 1,4),
p = a,b, can be determined once the material parameters of
the different rings are specified and the ring geometries set, the
field coefficients of any succeeding ring can be found by (56).
Starting from the first annulus ¢ = 1, (56) may be successively
applied (recursively) until the outermost (last) 7 = N annulus
is reached. The iterative process must be repeated N — 1 times
for N annuli, taking us from the field coefficient information in
the innermost first annulus a,1 and by, to the field coefficient
information in the last annulus a,n and by .

E. Nth Annulus—Quter Region Boundary Conditions

The progression of annuli may be effectively truncated at
the r = R boundary of the device where the last i = N
annulus ends and the outer region of the device begins. It
is here that ports exit from the device. It is also here that
the device transitions from a ferrite medium to a dielectric
medium. If one wishes to stop the 2-D field analysis at r = R,
then approximating boundary conditions must be applied here
to model the effect of the ports and the change at the other
contour regions where the device becomes dielectric. The
first requirement is met by imposing constraints typical of
those describing a circulator-microstrip line (or stripline) in-
terface. The second requirement is met by assuming magnetic
wall conditions where the device transitions from ferrite to
dielectric.

At the perimeter 7 = R, the boundary condition on Hy
consistent with both requirements is a Dirichlet boundary
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condition (BC)
Hyihg — Ao /2 < ¢ < g + Ay /2

HPer(R (/)) — Hb§¢b—”A¢b/2<¢< ¢b+A§bb/2
v Heie = Ade/2 < ¢ < e + A /2
0; nonport contour regions.

7

An arbitrary function like that specified in (57) can be repre-

sented by a one-dimensional Fourier series over the appropri-

ate domain (—m,m)
HY(R,¢) = (58)

ZAe

m—=—o0

Multiplying both sides of (58) by exp(—in ¢), integrating over
the domain, and using the orthogonality property

S i d 27 m=n
imo _—ing _ )
/ﬁwe e~ — {U; e (59)
yields the nth coefficient of the expansion
1 ™
A, = — HI (R, $)e™ "% dg. (60)
2

-

These coefficients must be precisely the same as those found
in the Bessel-Fourier expansion provided for the Hy field
solution for the last annulus in (34). Setting 2 = N, andr = R

>0

Hyn = Z [ann Cripany (B) + ban Clppn (R)] €7, (61)

n—=—o<w

Equating HE“(R. #) and Hypn, and using the orthogonality
property of the Fourier harmonic functions., we find that

A, = ‘lnNthuN(R) + bnNC’f}LbN(R)
— CLnNth,,No + bnNthbNO

. ¢ P
= anNCpung T 0nnCoppng (62)

where the second equality is consistent with earlier convention
to attribute the fifth index “O” to the fourth index ¢ = N
thereby assigning the radius for argument evaluation of the C
coefficient as 7o and where the third equality simply regis-
ters explicitly the radius for argument evaluation as r = R.

Examination of (44) and the linear mapping process implied
by (56) indicates that a, x5 and b,y can be written as

An N = Gpn(recur)a,o (63a)

(63b)

b.~ = b,x(recur)a,o.

Here a, v (recur) and b, i (recur) denote the quantities obtained
by applying forward recursion formulas (56) N — 1 times
starting with the formulas (44) and at the end factoring out
the single factors a,q from the final a,, n and b, results. The
recipe for getting a, v (recur) and b,, y (recur) requires a,,q to be
formally set to unity in (44) and the recursion process executed
as described. Equations (63) are extremely important relations.
Inserting them into (62) and solving for a,q gives

An

ann(recur)C?, o p + ban(recur)C,

(64)

ano =

Because all the quantities are known on the right-hand side of
(64). a,,0 is determined. Once @, is determined. all the fields
in all the annuli are known by the very nature of the recursion
process. In this way, the driving or forcing function contained
in (57) and implicitly stored in A4,,, leads to the fields to be
specified. That relationship means that we can now find the
Green’s functions relating forcing contour field H, (R, ¢) to
E_(r,¢). Thus, we will be finding the various components of
the recursive Green's functions.

III. RECURSIVE GREEN'S FUNCTIONS

A. Within the Disk

The cross- (or indirect) coupling Green’s function trelating
forcing contour field Hy.(R, ¢) to E.(r. ¢) will be found here.
First the fields will be examined within the disk, then the fields
on the outermost annulus-exterior interface.

Invoking (64), and putting ang into (27) and (28) gives the
three field components at any (r, ¢) location within the disk

Ay
¢
W any(reeun O,y g+ by (recun) Oy

X CVLP/LO("')EWL(P~ (65)

[ae)

Eeo(r.¢) =

To find the Green's function form of solution, the implicit
forcing function information in .4, must be made explicit
by replacing A, with (60), properly extracting the forcing
field from the integral. Identify Ny, contour regions where
H}** (R, $) is nonzero

Neppp

> HE(R.6)8(6 — 6,) A0,

g=1

HY™(R.¢) = (66)

Inserting (66) into (60) and reversing the order of summations
and integrations gives

NTrp

T

1

T or

4471 Per(

,0q)8(— b )Adge” " dp. (67)
q=1“"T
Performing the integration gives

N
1 P

— Per —ing,
An= oo ; HE" (R, ¢q)Adge . (68)

Returning to (65), and substituting for A,
EZO(T7 ¢)
1 i ZquHPer( ¢Q)A¢q
T or o ann(recun)C?, wp by (recun)CY
X Cnea()(r)eznd)~ (69)

7LI'L(Z)q

Reversing the order of Fourier azimuthal harmonic summation
and the port (discretization) summation produces

E:O(T* (f))
Nty ~o
— _]-_ iy Z Cnea()(r)
27 g=1 n=— an]\f(recur)C’nMNR + bn\r(rCCuI')C BBN R

X e —nop, eznqﬁH;’er(

s q) Dby (70)
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This can be considerably streamlined by defining the constant
denominator term to be

Yan = tnn(recur)C? haNR T bnN(recur)CnthR (71)

and placing it into (70)
E.o(r,¢)

Nr.p

DIDY

g=1 n=—o0

neaO

7“7¢q6”l¢H(l;er<R, ¢q>A¢q-

(72)

From the discussion at the beginning of Section II, we can
recognize

Hye(R,¢') = Hi™(R.dy) (73)
and perform the limiting process
limit Ag, — 0. (74)

When these two activities are completed, the z¢ cross-coupling
Green's function element arises from (72) as

X0

1 L Cnead(r) \—msegims 75,

YnN

GRin(r. ¢ R.gy) =

n=—00

The electric field E.o(r. ¢) is obtained from (75) by mul-
tiplying the Green’s function by qufe‘(R, ¢q) then applying
to this product the discretization operator obtained from the
integral operator by the assignment

Nrep
[]d¢ - Z[ Agy. (76)
That is, (4) in integral form
z0(r, ) = /_7; Grn(r 6 R, ¢V Hyo(R, ¢)d¢ (77)
now reads in discretized form
Nrep
Blo(r ¢ Z Gi(r, 85 R, ¢ Hoe( R, ¢g) Mg, (78)

It may be desirable to consider the case where the forcing
contour field Hy.(R,¢) is treated as constant over some
regions. Therefore we will consider N%rp port regions where
H,.(R, ¢) can be removed from the integrations in (77). This
will require a generalization of the integral-to-discretization
operator mapping provided in (76)

Tep $utDd, /2

/_W[]dw; A¢q+2/

There are now a total of N1y, port regions, some of which are
discretized into elements and some of which are continuously
treated

[1d¢.  (79)

—Ady/

NTTP = N’%rp + N%xp‘ (80)

Equation (78) becomes

EzO(T> )
N’?tp
= > Giulr.¢: R, ¢g) Hye (R, 69) A,
q=1
Nty bo+AG. /2
+ 3 HlBo) | Gl (r & B, ¢
v=1 v —AG, /2
(81a)

Our choice will be to let N%rp > land Nf,, =0or N&"\rp =0
and N, > 1 noting that the null value indicates that no sum
occurs [26]. The first selection allows for infinitesimal ports
and the second continuous ports. Therefore. we find for the
continuous port case that

c
Ntop

N GE(r ¢ R, ¢0)Hyo R, 6,)A¢,  (81b)

p=1

EZO (T* d)) =

defining a modified Green’s function

i i C’ﬂeao(r) fveznqS
— 1, .

27 = TnN

n=—o<

Gria(r. ;R dy) = (82)

For the continuous port the expression was made to look like
the discretized port expression by defining a modified definite
integral which is normalized to the finite angular width of the
port region A,

JU I#
"~ Ra )

where the definite integral evaluation is

butdde/2 9 A
I = / e d¢’ = Zsin (7L————¢U> mindy - (84)
=2, /2 n 2

B. On the Outer Annulus-Port Interface

Due to the separable nature of the governing equation (16),
and the resulting sourceless solution being the product of
radial and azimuthal functions, the Green’s function evaluated
on the contour r = R simplifies significantly. The Green’s
function and the fields found as a result are of importance in
relating the solution found inside the ferrite circulator domain
on 0 <r < Rand —7 < ¢ < 7 to the outside structure,
namely the interfacing ports.

If we assign a notation similar to that found in (71) to the
radial numerator factor, developed from (31) with z = N

’yfﬁv = anN(recur)CneaN(R) + bnN(I'CCUI‘)CnebN(R) (85)

with upgraded notation being employed here. Furthermore, let
us define normalized quantities

’qu
= T 89
YN

Here, p = z,7, or ¢; ¢ = e or h.
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With the definitions (85) and (86). the field and recursive
Green's function can be stated as

v
[\"l'lp

> G (R ¢ Ry Hool R, 6g) Ay
q=1
NS, o
+ S CHin(R 6 R b HyelR. 6,) Dby (8T)

v=1

E:N(R', (1{)) =

where
GEHN(R (/) R. (/)q — Z ,—y;}ﬁve ””/"1(;”’4’ (88)
and the modified expression
. 1 = o
24 . _ = =%¢ Fr_ing
Geun (R ¢ R, ¢y) = o VHVZ_OO Yanlne™. (89)

IV. SCATTERING PARAMETERS
FOR A THREE-PORT CIRCULATOR

Here we will consider a particularly simple case where
the circulator either has discretized ports (actually very small
as to appear infinitesimal) or continuous ports but not both.
Furthermore, if discretized ports are treated, then only one
element per port is allowed. In effect, what that means is that
the angular extent of the ports is considered so small that a
single element is sufficient to approximate the port contour.
The general case for many elements is treated elsewhere [26].
Thus, (87) becomes, if we limit the device to three ports,
making N{,, = Ng,, = 3

3

Eon(R.§) =Y Giin(R.6; R dy)

g=1

X H@C(Rw(/)q)A(z)q (90)
where
%z G=e (R, $; R.p,): discretized
G (R. ‘R, — 7EHN q
pan(fL ¢ £ 0,) { EHN( b R, ¢q); continuous.
o1

If we absorb the azimuthal spread into the Green’s function
by defining a modified form

Gl9:90) = Gin(B- 5 R 90) Ay

where the understood indices and arguments have been
dropped. (90) can be expanded as

E.n(R,¢) =

Now evaluate (93) at each of the ports, ¢ = a.b, ¢, labeled
counterclockwise, and simplify the notation for E.y(R, ¢) to
E? by setting ¢ = ¢,

(92)

G (¢, o) H, +G(¢ ¢o)Hy +G(¢ b )He. (93)

E? = Gi(gbun ¢<1)Hur +C?(¢u,-, (:bb)Hb ‘|‘é(¢(m (pL)H (943)
B2 =G(¢u, da) Hu +G(p, ) Hy +G(¢n, 6 ) He  (94b)
ES =C(¢.,da)Ha +GC(beydp)Hy +Cbey b)) He.  (94c)

Let us make a number of practical assumptions which will
further simplify the coming analysis. Assume that the input
port a is subject to reflections from the transmission line-
circulator interface. Therefore s;11 is nonzero and the match
is imperfect for port ¢. But assume that the other two ports,
the output port b and the isolated port ¢, are perfectly matched
to the transmission lines. These assumptions translate into the
relationships

Elny # EL: (95a)
HY ., # Hj, (95b)
EL oty = B (96a)
HY oy = He, (96b)
B gy = EL: (97a)
HY oy = H§ (97b)

where the subscript indicates an inward or outward propa-
gating wave along the transmission line in relation to the
circulator. Each transmission line is characterized by a wave
impedance. Consequently

E?(m) :<. (9821)
Ha(m)
Eb {out) _ _Cb (98b)
Hb(r)ut)
Fe
z(out)
— = (.. (98c)
Hc(out)

Next. we define the s-parameters which are to be determined
by this process of analysis

E(ZL = (1 + 811>Eg(m) {99a)
Hy = (1—s11)H} ) (99b)
E®
g1 = o) (100)
Efin)
B u
s31 = E{E Y (101)
z(1n)

These last formulas (95)-(99) must be combined to utilize
only the total fields in the transmission lines because at the
circulator-transmission line interfaces we relate the z and ¢
components by interfacial tangential boundary conditions

Ei(cir) = EY(TL); (102a)
Hj(cir) = H3(TL) (102b)
where formulas (102) relate total fields. When this is done

l o
Ee=Te g (103a)

1—-s11

b

s21 = (1 + bll)E (103b)
831 = (1030)
o )
E = —( (104a)
o 104b
. e ( )
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Make the input field Ej( in) = 1 and put it into (99a) so that
the H-field is determined 1n terms of the input s-parameter in

(103a). We obtain

E* = (1+s11) (105)
é}i—l =1. (106)

Combining these two equations eliminates sq;
El=2-(,H,. (107)

Now using (104) and (107), remove the E-field unknowns
from (94), obtaining a simultaneous set of three equations in
three unknown H-fields

2 - CaHa - GaaHa + Gabe + Gach (108&)
—GoHy = Gpo Hy + GooHp + GocHe  (108b)
_Cch = G(:(LHa + Gchb + Gcch (1080)
Rewriting (108)
(Gao + C)Ha + GapHy + GucHo =2 (1093)
GraHo + (Gop + G )Hy + GoeHe = 0 (109b)
GcaHa + Gchb + (Gcc + CL’)HC =0. (1090)
The solution for the H-fields is
1 2 Gab Gac
H,= Do 0 (Gp+ ) Ghe
rl0 Gcb (Gcc + Cc)
2
- F[(be + Cb)(Gcc + Cc) - Gchcb] (1103)
14
1 (Gaa + Ca) 2 Gae
Hb = D_ Gba 0 Gbc
B Geq 0 (Gcc + Cc)
2
= _F[Gba(Gcc + Cc) - Gchca] (llob)
4
1 (Gaa + Cu) Gab 2
H = D Gha (G +G) 0
P Gca Gab 0
2
= E‘[GbaGcb — (Gop + G)Gd) (110¢)
p
where the H-field system determinant is
(Guu + Cu) Gab Ga(
Dp = Gba (be + Cb) Gbc (111)
Gca Gz,b (Gcc + Cc)

The H-fields have been found and from them the s-parameters
can be obtained also. Equation (106) gives

s11=1- CnHa (1123)
sy = BY = —( Hy (112b)
831 = Eg - —CCHC (1120)

where the latter two formulas came from using (104) and
(105) in (103b) and (103c¢). Obviously, the E-fields have been
obtained by this process too.

V. CONTRIBUTIONS TO PERMEABILITY
TENSOR AND DIELECTRIC CONSTANT

The work here treats radial variation of the ferrite material
parameters in circularly shaped stripline or microstrip circu-
lators. The “circular” case is important not only because it is
easier to solve than most other shapes, but also because nearly
all quasi-TEM microwave circulators made today use round
ferrite pucks. It is suspected that wider bandwidth circulators
can result from the use of multiple ferrite material rings [27]
and possibly from bias field shaping.

Fig. 1 shows a circulator with a central disk (region 0) and
four annuli (regions 1-4). Each region shown in Fig. 1 may
represent a different ferrite material; or it may simply represent
a computational region in which the material is the same as its
neighbors but the demagnetizing factor and/or the applied bias
field is different from its neighbors. In either case, the variation
of any or all of these three elements (ferrite material type,
applied field, and demagnetizing factor) is mathematically
lumped into the permeability tensor, (12), in Section II. Also,
any radial variation of the dielectric constant and loss tangent
with varying ferrite materials is mathematically lumped into
the effective propagation constant, (17), in Section II, by way
of the complex dielectric constant.

In anisotropic ferromagnetic materials, a relative perme-
ability different from unity arises from the tensor magnetic
susceptibility, x, of the material, which relates the H-fields to
the magnetization, M = Y H. The relative permeability, which
relates B-fields to H-fields, B = jiH, is

. -]. O 0 Xz;v _Zme O
fp=1+x=10 1 0| + lixye Xyy O
0 0 1 0 0 0
1+ Xew  —iXay O
= Xye 1+xyy O
| 0 0 1
[0 —in 0O
= w0 (113)
K 0 1

The susceptibility terms are complex. The complex p = p' —
Fi/" and k = £’ — jr” are rf permeability terms and the unity
term is the DC permeability affecting the bias field, where
in rectangular coordinates the bias field is in the z-direction.
Expressions for the real and imaginary parts of 1 and r are
conveniently developed from [28] and (113)

wmwO[w(% - w2(1 — a7211)]

"
w=1t [w? — w2(1 + a2)]? + Wwiwia?,
"o_ wmwam[w% + w2(1 + a?n)]
w2 = w?(1+ a2)]? + dwiwial, (114)
L wpelwd - w1+ 0]
o= [wg — w2(1 + 02,)]2 + dw2wial,
W — =2 Wow? O

[wg — w2(1+ al))? + 4wwiod,”

In these expressions wy, = —yM =~ —vyM; in which M, is the
saturation magnetization, wo = —+H, in which H, is the inter-
nal bias field, w is the actual operating radian frequency, and
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o, 1S the damping term, related to magnetic linewidth AH
by @, = —AH~/2w, and v is the gyromagnetic ratio whose
value in MKS units is —2.2126 x 10° (rad/s)/(ampturns/m).
Also. the internal bias field is equal to the external applied
field, Hypp. minus the product of the demagnetizing factor,
Ng = N,,. and the saturation magnetization, A, giving
H, = H,,p — N..M, when written in the format consistent
with MKS-unit thinking. In this equation, M and H are
both in ampturns/m. N.. describes the = component of the
demagnetizing ficld when the sample is magnetized in the 2
direction. For those more familiar with Gaussian-unit thinking,
this equation would read H, = H.pp — N..4nM,. where
4w M, is in Gauss and H is in Qersteds. N,, varies from
point-to-point in the ferrite puck and has a value between zero
and one. A first-order estimate of the magnitude and shape
of N,, in a uniform circular ferrite puck is given in [29].
In practice. |Happ| > N.. * 47 M, must be maintained at all
points in all the ferrite material rings; this is because the initial
assumption in the derivation of the equation of motion of the
total magnetization M = ZM, + me'“*t, in the presence of a
small rf magnetization m, is that the material be saturated.
This implies a steady-state, z-directed magnetization M., equal
to the saturation magnetization M, created by an internal bias
field in the same direction at all points.

In summary, the basic terms which can vary from point-to-
point (or ring-to-ring for the case here) are M,, H,,p. N,
and AH, accounted for in the permeability tensor; and the
ferrite dielectric constant and loss tangent, accounted for in
the complex dielectric constant. An additional constraint is
H, > 0 everywhere in the ferrite material.

VI. NUMERICAL RESULTS

The information in Sections II, III, and IV has been used
to create a computer code for calculating the performance of
three-port microstrip and stripline circulators. It is not obvious
from a cursory comparison of the mathematical expressions

here and those in Bosma [18], [19], but the expressions here

reduce exactly to the Bosma result for the radially uniform
case. In (89) above, the Green's function consists of three
factors: e'"® which is related to a specific E, location, I*
which is related to a specific perimeter A, location and port
angle, and f‘y;‘ﬁ,. The product I2¢** involves the perimeter
boundary and is the same for either a uniform circulator puck
(as in Bosma) or one with radial variations. Therefore, to
determine analytical equivalence, it is only necessary to show
that the solution of f‘y;i, for a single region be the same as that
part of the Bosma solution. By using an inner disk of radius
ro and one outer annulus of outside radius r1, and then setting
r1 = ro, with the material parameters of the outer annulus the
same as those of the inner disk, the case of a uniform puck
can be derived. From (86) above, for one annulus

_ _ Tni1
Vo1 = =
Tni
TYnl = anl(recur)onenl() + bnl(recur)cneblO
/
Yn1 = an1(recur)Crpaio + bui(recur)Crpio

Onea(JO Onebl[

(recur) Moy Chhaoo  Crnbir
a1 (recur) = =

Dy Cneal[ Onehl[

Cnhal] CVnhblf

Oneal[ OnpaO()

b (I‘CCUI') A[();z Cnhal] O’n,haOO
nl pr— =

Dy Creatr Chepir

Cnhatr Chnpir

(115)

In these expressions, the following relationships apply. They
are written out to help clarify the subscript meanings

Chealo = Jn(keff,lrl)
CneblO = Nn(keff,lrl)

nK
Crhario = €1 |:kf'eff,l'],/7(koﬁ‘17’1) - 1 Jn(keffﬂ’l)}

M1

k1

C’nhbl() =1 |:l€cff‘1Nr/[(kct‘f,1rl) - Nn(keff.lrl ):|
[22KA
CneaOO - Jn(keﬁ,()ro)

C’nebl] = Nn(keffJTO)
Cneal[ = Jn(ka‘f,l"'O)
, [ nkg
Crha00 = €0 | ket .0, (ke 0T0) — Jn(keff.OTO):|
L Ha=0T0
. st
Cunpir = ¢1| ke 1 Ny (ke 170) — Nn(keffﬂ’o)}
L 1T
[ nKA
Coharr = 1 ket 1), (ker170) — Jn(keﬁ,l'ro):|
L H#1iTo
()'NI, - .
WO teff m
(116)
For the special case of 11 = 79 = r, keg1 = keto =

ke, 1 = cg = ¢, and using © = kg7, then Ayo = 0. Also,
My, contains the product of the Wronskian (discussed in [30])

W{JTa(2). Nul@)} = Ju(2) N} () = No(2)J, ()
= 2/(ms)

and a nonzero constant, so that

— W o Hetf Jz x
o1 = n( ) : (117)
of [.],’l(w) ~ ne g, (;L-)}
Using Bosma’s effective wave impedance, Cer = wiiofbest/
ke, ¥n1 becomes
Jol(x

Ta(w) ()]

This is exactly the equivalent part of the Bosma [18] double-
sided summation expression (60) which leads directly to the
single-sided summation in his expression (61).

The code here has been tested for a circulator with a single
region of ferrite material and for a multiregion circulator in
which the ferrite materials are all alike. The computed results
were identical when the material, bias field, demagnetizing
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conditions, and outer radius were the same for the two cases.
Also the new code gave computed results on uniform cases
which were exactly the same as those given by a code
developed earlier at NRL [6], [7], based on [18], [19], which
was only for radially uniform cases. The validity of the earlier
NRL code has been put on firm ground with good comparisons
with other calculated results and with experimental data [6],
[7], so the new code is equally valid.

The exact agreement between the Bosma approach and that
described here requires the use of the same definition for E, at
the circulator ports in the two approaches. Bosma derived and
used an expression for the average electric field in [19] for a
strip transmission line, while the derivation here uses the field
at the center of the strip, whether stripline or microstrip. The
difference between the two is that, in (84) above, an additional
multiplying term of

=(5)/ ()

appears in the Bosma result for I} when average E, field is
used, which then appears in the summation of terms in the
recursive Green’s function in (82). The difference between
the two in the final calculated performance is not great, but,
for exact agreement with Bosma’s original intention (119),
must be incorporated. It is not known at this time whether
the use of average field or center field gives better agreement
with laboratory measured results. The numerical results which
follow were based on the use of the center value of F, at
the ports. The microstrip circulator used for the reference
numerical calculations is described in Fig. 2. There is a
single quarter-wavelength matching transformer included in
the calculations.

In the following figures, the reference calculated perfor-
mance shown in Fig. 3 is with uniform ferrite material, with
N, = 1 throughout, and with uniform eéxternal applied field
of 1780 Oe. Fig. 4 gives the calculated performance when N,
has the values calculated from [29], and shown in Fig. 5, with
other parameters unchanged. This curve was approximated
using five rings with five values of IV,,, averaged in each
ring. Fig. 6 gives the calculated performance when the external
applied field is allowed to vary as shown in Fig. 7. Again
a five-ring approximation was used, with other parameters
the same as for the reference case in each ring. Fig. 8 gives
the calculated performance when two different ferrite material
rings are used, with the inner ring having half the radius of
the outer ring. Multiple-ferrite-ring circulators are of interest,
in general, because of their potential for wide bandwidth, as
suggested in [31]. The inner ring is Trans-Tech G-113 yttrium
iron garnet, described in Fig. 2, and the outer ring is Trans-
Tech G-500 yttrium-gadolinium-aluminum iron garnet. The
pertinent characteristics of the G-500 are: 47 M, = 550 G,
Linewidth = 65 Oe, Dielectric Constant = 14.4, and Loss
Tan = 0.0002, and all of these values were used in the
outer ring. Although the radial variations cause changes in
the circulator performance, it is interesting to see that major
deterioration does not occur for the fairly realistic cases studied
here. These results, however, should not be extrapolated very
far. Applications vary so widely that these results may not be

(119)

R = 0.27%¢cm SUBSTRATE : Trans-Tech G113

Wy = 0.096cm 4nMg = 1780 G AH = 45 Oe,
L = 0.241cm g = 15.0, Tand = .0002

Wy = 0.030cm (50 ohms) Substrate thickness = 0.051cm
Three Way Symmetry Oonductor’ Thickness = 0.0005¢ m

Fig. 2. Top view of the circulator used in the calculations. It has a quarter
wave transformer at each port, with wy = 0.096 cm and L = 0.241 cm.
Other values are w2 = 0.030 cm for 50 ohm lines and outside radius of
magnetized puck is B = 0.279 cm. The substrate is a Trans-Tech G113
with a 47 My = 1780 G, AH = 45 Oe, &, = 15.0, and tan§ = 0.0002.
Substrate thickness 7 = 0.051 cm, and conductor thickness = 0.0005 cm.
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f = 6-11 GHz. These calculated s-parameters for a uniform material
distribution will act as reference values for the following figures.

at all like what happens at much higher or lower frequencies
and at much wider or narrower bandwidths.

The time required for a single frequency calculation, for
n = —9 to 49 in (89), is shown in Fig. 9. In [7] there is
some discussion about the choice of n, but 9 is at the upper
limit of the values typically used and, therefore, at the upper
limit of calculation time. The Macintosh Quadra 650 results
are of the same order as for a 486-type desktop computer.
Work station environment is considerably faster. The single-
region calculation is handled slightly differently from those
for two or more regions, which explains its deviation from the
rest of the curve.

VII. CONCLUSION

With the work presented here it is now possible to obtain
information quickly, easily, and inexpensively about the ef-
fects of nonuniform demagnetizing factor or bias field, and
bandwidth effects of using multiple ferrite rings of different
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materials. It is a major advantage that only a modest computer
platform is required to get these answers.

Here we developed a 2-D recursive Green’s function with
elements suitable for determining the electric field compo-
nent F, anywhere within the circulator. The problem was
inhomogeneous because of variations in the applied magnetic
field H,p,, magnetization 4w M,, and demagnetization factor
Ng. All magnetic inhomogeneity effects can be put into the
frequency dependent tensor elements of the anisotropic perme-
ability tensor fi. The recursive nature of the Green’s function
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is a reflection of the inhomogeneous region being broken up
into one inner disk containing a singularity and N annuli. Ports
were separated into discretized ports with elements or contin-
uous ports located at arbitrary azimuthal ¢ and arbitrary line
widths. From the Green’s function, s-parameters were' found
for a simple case of a three-port ferrite circulator. Numerical
results have been presented for the case of symmetrically
disposed ports of equal widths, taking into account the radial
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inhomogeneities. Studies of breaking up the area into 1, 2,
and 5 annuli were undertaken to treat specific inhomogeneous
problems. A computer code which evaluates the recursive
Green’s function was shown to be very efficient and to have
no convergence problems.

REFERENCES

[1] K. M. Gaukel and E. B. El-Sharawy, “Three-port disk circulator analysis
using only port segmentation,” in JEEE MTT-S Int. Microwave Symp.
Dig., May 1994, pp. 925-927.

[2] L. E. Davis and R. Sloan, “Semiconductor junction circulators,”
MTT-S Int. Microwave Symp. Dig., June 1993, pp. 483-486.

[3] I. Helszajn and D. S. James, “Planar triangular resonators with magnetic
walls,” IEEE Trans. Microwave Theory Tech., vol. MTT-26, no. 2, pp.
95-100, Feb. 1978.

[41 J. Helszajn and D. J. Lynch, “Cut-off space of cloverleaf resonators with
electric and magnetic walls,” IEEE Trans. Microwave Theory Tech., vol.
40, no. 8, pp. 1620-1629, Aug. 1992.

[5] R. W. Lyon and J. Helszajn, “A finite element analysis of planar
circulators using arbitrarily shaped resonators,” IEEE Microwave Theory
Tech., vol. MTT-11, no. 11, pp. 1964-1974, Nov. 1982.

[6] R. E. Neidert, “Computer program CIRCREN for Y -junction stripline
and microstrip ferrite circulators,” NRL Report 9381, Apr. 1992.

[71 R. E. Neidert and P. M. Phillips, “Losses in Y -junction stripline and

microstrip ferrite circulators,” [EEE Trans. Microwave Theory Tech.,vol.

41, no. 6/7, pp. 1081-1086, June/July 1993.

T. Miyoshi and S. Miyauchi, “The design of planar circulators for w1de-

band operation,” IEEE Trans. Microwave Theory Tech., vol. MTT-28,

no. 3, pp. 210-214, Mar. 1980.

T. Miyoshi, S. Yamaguchi and S. Goto, “Fesrite planar circuits in

microwave integrated circuits,” JEEE Trans. Microwave Theory Tech.,

vol. MTT-25, no. 7, pp. 593-600, July 1977.

C. M. Krowne, “Vector variational and weighted residual finite ele-

ment procedures for highly anisotropic media,” IEEE Trans. Antennas

Propagat., vol. 42, pp. 642650, May 1994.

G. G. Gentili and G. Macchiarella, “Efficient analysis of planar circu-

lators by a new boundary-integral technique,” IEEE Trans. Microwave

Theory Tech., vol. 42, no. 3, pp. 489-493, Mar. 1994.

Y. Ayasli, “Analysis of wide-band stripline circulators by integral

equation technique,” IEEE Trans. Microwave Theory Tech., vol. MTT-

28, no. 3, pp. 200-209, Mar. 1978.

[13] N. Kishi and T. Okoshi, “Proposal for a boundary-integral method

without using Green’s function,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-35, no. 10, pp. 887—892, Oct. 1987.

[14}] T. Okoshi and T. Miyoshi, “The planar circuit~——An approach to mi-

crowave integrated circuitry,” IEEE Trans. Microwave Theory Tech., vol

MTT-20, no. 4, pp. 245-252, Apr. 1972.

H. How, T.-M. Fang, C. Vittoria, and R. Schmidt, “Design of six-port

stripline ferrite junction circulators,” IEEE Trans. Microwave Theory

Tech., vol. 42, pp. 1272-1275, July 1994.

[16] C. M. Krowne, “Theoretical techniques for analyzing nonreciprocal

microwave planar devices: Modeling, simulation and relationship to ex-

periment,” Workshop on CAE, Modeling and Measurement Verification,

London, Oct. 1994, pp. 110-115.

-, “Elcctromagnetic propagation and field behavior in highly

anisotropic media,” in Advances in Iimaging and Electron Physics. - New

York: Academic, vol. 92, 1995.

H. Bosma, “On stripline Y -circulation at UHF,” IEEE Trans. Microwave

Theory Tech., vol. MTT-12, pp. 61-74, Jan. 1964.

[191 H. Bosma, “On the principle of stripline circulation,”

B, suppl. 21, Jan. 1962, vol. 109, pp. 137-146.

A. M. Borjak and L. E. Davis, “On planar Y -ring circulators,” IEEE

Trans. Microwave Theory Tech., vol. 42, no: 2, pp. 177-181, Feb. 1994.

L. E. Davis and V. A. Dmitriyev, “Nonreciprocal devices using ferrite

ring resonators,” in IEE Proc., June 1992, vol. 139, pt. H, no. 3, pp.

257-263.

{22] J. Helszajn and W. T. Nisbet, “Complex Gyrator circuit of junction

in IEE Proc., Aug.

in [EEE

[8

[hute}

[

—

[10]
[11]

[12]

[15]

(17]

[18]
in Proc. IEE, pt.
[20]

f21]

circulators using weakly magnetized ring resonators,”
1992, vol. 139, pt. H, no. 4, pp. 319-322.

[23] C. M. Krowne, “Fourier transformed matrix method of finding propaga-
tion characteristics of complex anisotropic layered media,” IEEE Trans.
Microwave Theory Tech., vol. MTT-32, pp. 1617-1625, Dec. 1984.

[24] C. M. Krowne, A. A. Mostafa, and K. A. Zaki, “Slot and microstrip
guiding structures using magnetoplasmons for nonreciprocal millimeter
wave propagation,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.
1850-1860, Dec. 1988.

[25] C. M. Krowne, “Waveguiding structures employing the solid state
magnetoplasma effect for microwave and millimeter wave propagation,”
IEE Proc., Microwaves, Antennas, and Propagat., invited review paper
for special issue on gyroelectric waveguides and their circuit application,
June 1993, vol. 140, pt. H, no. 3, pp. 147-164.

C. M. Krowne and R. E. Neidert, “Inhomogeneous ferrite microstrip
circulator; Theory and numerical calculations using a recursive Green’s
function,” in 25th Eur. Microwave Conf. Dig., Bologna, Italy, Sept. 4-8,
1995, pp. 414-420.

R. E. Blight and E. Schlémann, “A compact broadband microstrip
circulator for phased array antenna modules,” in JEEE MTT-S Int. Symp.
Dig., 1992, pp. 1389-1392.

[28] R. F. Soohoo, Theory and Application of Ferrites.
NI: Prentice-Hall, ch. 5, 1960.

R. I Joseph and E. Schlémann, “Demagnetizing field in nonellipsoidal
bodies,” J. Appl. Phys., vol. 36, no. 5, pp. 1579-1593, May 1965.

C. M. Krowne, “Cylindrical-microstrip antenna,” IEEE Trans. Antennas
Propagat., vol. AP-31, pp. 194-198, Jan. 1983.

M. G. Mathew and T. J. Weisz, “Microwave transmission devices
comprising gyromagnetic material having smoothly varying saturation
magnetization,” U.S. Patent 4390853, June 28, 1983.

[26]

[27]

Englewood Cliffs,
[29]

[30]

(31]

Clifford M. Krowne (S’73-M’74-SM’83) received
the B.S., M.S., and Ph.D. degrees at University of
California at Berkeley, Davis and Los Angeles.

He has worked in the Microelectronics Divi-
sion of Lockheed Missiles and Space Company in
Sunnyvale, CA, as a Member of the Solid State
Technical Staff of the Watkins-Johnson Company
in Palo Alto, CA, and as a Faculty Member in
the Department of Electrical Engineering at North
Carolina State University, Raleigh. Since 1982, he
has been with the Microwave Technology Branch,
Electronics Science & Technology Division of the Naval Research Laboratory,
Washington, DC, studying microwave and millimeter-wave properties of
active and passive solid state devices. He also was an Adjunct Professor
of Electrical Engineering at the University of Maryland, College Park, MD.
He has published 130 conference papers, books, and journal papers, and has
several patents on solid state electronics, microwave circuits, electromagnetics,
engineering education, and applied physics.

Dr. Krowne has served on the Technical Program Conference Committees
of the Antennas and Propagation Society (1983 and 1984) and the Microwave
Theory and Techniques Society (1982 to 1996), has chaired sessions in the
electromagnetic theory, microstrip antenna, and solid-state devices/circuits,
superconductor, .and monolithic circuit areas, and organized two MTT-S
workshops on 2-D/3-D full wave simulation (1992) and self-consistent particle
transport/full wave dynamic field simulation (1993). He was a member of the
1987 MTT Symposium Steering Committee. He is a member of Phi Kappa
Phi and Tau Beta Pi and a Fellow of the Washington Academy of Sciences.

Robert E. Neidert ($’56-M’70) received the B.E.
(E.E.) degree in 1959 from Vanderbilt University,
Nashville, TN, and has done graduate work at the
University of Florida, St. Petersburg.

From 1959 to 1962 he was with the Sperry
Microwave Electronics Company, Clearwater, FL,
where he was engaged in the development of mi-
crowave components for radar systems. From 1962
to 1969 he served as Senior Engineer and Project
Leader at the General Electric Company, Commu-
: nications Products Department, Lynchburg, VA, in
the development of microwave components and solid state sources for TV
and multiplex telephone radio relay systems. From 1969 to 1972 he was
a Principal Engineer at Radiation Systems, Inc., McLean, VA, where he
worked in microwave antennas and antenna feed networks. Since 1972 he
has been involved in research on microwave and millimeter-wave devices and
circuits at the Naval Research Laboratory, Washington, DC. He has authored
numerous papers in the fields of communications systems components,
microwave integrated circuits, computer-aided microwave circuit design,
bipolar and FET amplifier design, FET modeling, millimeter-wave circuits,
vacuum microelectronics, and microwave ferrite components.

Mr. Neidert is a member of Tau Beta Pi.



