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Abstract—This paper presents a new theory for the operation
of microstrip and stripline circulators, specially set up to permit
radial variation of all the magnetic parameters. A computer code,
taking only a few seconds per calculated point on a modest
computer, was developed from the theory, and calculated results
are given. In the theory we develop a two-dimensional (2-D)
recursive Green’s function G suitable for determining the electric
field E, anywhere within a microstrip or stripline circulator.
The recursive nature of G is a reflection of the inhomogeneous
region being broken up into one inner disk containing a sin-
gularity and .l annuti. G has the correct properties to allow
matching to the external ports, thereby enabling s-parameters
to be found for a three-port ferrite circulator. Because of the
general nature of the problem construction, the ports may be
located at arbitrary azimuthal angle # and possess arbitrary
line widths. Inhomogeneities may occur in the applied magnetic
field Hal,p, magnetization -1rrM., and demagnetization factor
J\’d. All magnetic inhomogeneity effects can be put into the
frequency dependent tensor elements of the anisotropic perme-
ability tensor. Numerical results are presented for the simpler but
immensely practical case of symmetrically dkposed ports of equal
widths taking into account these radial inhomogeneities. Studies
of breaking uptheareaiuto 1,2, and5annuti are undertaken to
treat specific inhomogeneous problems. The computer code which
evaluates the recursive Green’s function is very efficient and has
no convergence problems.

I. INTRODUCTION

T HE ferrite community has long needed a simple but
accurate way to calculate circulator performance in the

presence of radial variation of bias field, ferrite material type,
and demagnetizing factor. Full analysis with finite element

or finite difference methods is so slow, user-unfriendly, and

expensive that generally useful answers about the affects of
radial variations have not been forthcoming. The paper here
provides a means to get these answers, at the rate of a few

seconds per calculation point, with a computer code developed
from a new partial mode matching theory.

Previous work in the area of multiport circulators has
focused on the treatment of high-symmetry geometric con-
figurations, a limited number of symmetrically disposed ports,

and a homogeneous nonreciprocating medium [1]–[1 5]. The
theoretical techniques for modeling the circulator have ranged
from Green’s functions, boundary element methods, boundary

contour integral methods, to finite element methods, Each
method has special advantages and disadvantages in relation
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to the other methods, depending upon what the researcher
is interested in emphasizing in the problem. Discussion of

these numerical techniques as well as other information on
circulators and anisotropic media may be found in recent
surveys [16], [17].

Our interest is in obtaining a formulation which allows us to

inspect the physics and electromagnetic of the solution, and

which can be related to earlier simple results on homogeneous
problems. We also want a solution which is numerically

efficient to evaluate. With these considerations, an analytical
approach was taken to derive a Green’s function which would
allow the circulator region to be divided up into an arbitrary
number of rings of definite radial thickness. The idea was to
make the rings or annuli thin enough to accurately describe the

actual arbitrary radial variation of the various inhomogeneities
contributing to the permeability tensor.

In Sections II and III we develop a two-dimensional (2-

D) recursive Green’s function G suitable for determining the

electric field Ez anywhere within the circulator. The recursive
nature of G is a reflection of the inhomogeneous region being
broken up into one inner disk, containing a singularity, and N
annuli. G has the correct properties to allow matching to the

external ports, thereby enabling s-parameters to be found for
a three-port ferrite circulator. Because of the general nature of

the problem construction, the ports may be located at arbitrary
azimuthal angle @, and possess arbitrary line widths w, for the
ith port. The line widths may be also measured in terms of
the angular spread A@, on the outer edge of the circular disk
of radius R. Inhomogeneities occur in the applied magnetic
field H.PP, magnetization 47rA!Is, and demagnetization factor

Nd. All magnetic inhomogeneity effects can be put into

the frequency dependent tensor elements of the anisotropic
permeability tensor. The process of how this can be done will

be discussed in Section V.
Section VI gives some calculated results for a few arbitrarily

selected cases of radially nonuniform demagnetizing factor,
applied bias field. and ferrite material types. These calculations
are for the immensely practical case of symmetrically disposed
ports of equal widths. Studies of breaking up the area into 1,2,
and 5 annuli are undertaken to display the approximation levels
required to treat inhomogeneous problems. The computer

code, which evaluates the recursive Green’s function, is very
efficient and calculation time is presented.

II.

The Green’s function to
a recursive nature, may in

THEORY

be developed below, although of
the limit be shown to reduce to
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Fig. 1. Top wew of a radmlly inhomogenemrs circulator show)ng the inner
disk labeled with index number L = O and the arrnuh indexed from t = 1
onward Here four annuh are shown. The figure \hows the speed case of

symmetri~all~ disposed POrtS located at d = –~/3 (input). ~/3 (output).
and rr (Isolated). Angular port width is .1o,, A side view is shown also for
a real physical clrccdator. Biased femte material of thickness H exists only
for r < R,

either the single circular disk case [ 18], [19] or a circular ring
[20]–[22]. We develop the Green’s function as a response to a

forcing function which represents a driving function, or source
function, of magnetic field type, Lfo,,. located on the azimuthal
boundary of a circular contour of radius R. Fig. 1 shows
the general geometric configuration of the circulator. The
forcing function has the property of limiting the field to finite
values only at radius r = R and azimuthal angle locations

4== A, where i represents specific IPoints along the enclosing
circulator contour. The linear system of partial differential

equations (PDE’ s). through which H@, (r = R,@ = #,)
imposes its forcing behavior, may be written formally in terms

of one governing PDE with operator L acting on our prime
field quantity of interest here, E,

From E:, the other field components, HA and H,, can be
determined in this 2-D problem.

Let us identify the magnetic field at location r = R to be the

It is the Green’s function G~H (r, ~; R, #’) at r = R which
we are particularly interested in obtaining in this paper so that
the s-parameters may be found for the three-port inhomoge-
neous circulator. The recursion process to be employed here

is like that utilized for planar structures [23].
Maxwell’s sourceless curl equations are, for harmonic con-

ditions with phasor time dependence exp(itit ) assumed

V x E = –/Lu.JB (5)

VXH=WD. (6)

These two equations are valid within the ferrite disk re-
gion which is considered to be inhomogeneously loaded with

material (the disk could also be a magnetically biased semi-
conductor region displaying the magnetopl asma effect). The
constitutive relationships are given generally by

B=JH (7)

D = &E, (8)

In the ferrite disk region, we will assume that the dielectric

tensor reduces to a scalar

;=E. (9)

Of course, this would not be the case for a semiconductor

where we would retain the tensor permittivity and drop the

tensor permeability [24], [25].
The general expression in matrix notation for the curl of an

arbitrary vector field in cylindrical coordinates is

where it is noted that the expansion of ( 10) is accomplished by
keeping the unit vector terms outside of the partial operators

d,, i = r,+, z. It is also noted that we use F instead of the

usual p for the cylindrical radius. For the 2-D problem we are
constructing, it is sufficient to drop a dimension by setting

(11)

To be somewhat consistent with notation in the circulator
literature [18]. we set the permeability tensor

‘=[; ‘( !1 ’12’
contour field associated with the surface in the 2-D problem

~. - r-u J

we are treating
By (7) and (12)

(2) B=jiH=

where an explicit subscript is added to denote this association.
17@Cmay be related to the physical forcing magnetic field
H4. by the relation

(3)
Solving for Ho and H, in terms of partial derivatives of E,

Using the properties of the Dirac delta function in the spatial 1

[

t~ r3Ez dEz
radial direction and the azimuthal angular direction, we find H4=,

w(~2 – ti2) r dq5 ‘p& -1
(14)

Ez(r. %) =
/

1
r G’~~(r, 4; R, #’)H@(. (R, #)d@’. (4) H, =

[-

tp i3E, + ~ tlEz

ti(~~ – h~) 7 (9(/$ -1 (15)
—x &
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The governing Helmholtz equation forthis problem is

V2EZ + l&E= = Q (16)

with the definitions

lc2R= Wzqlefie (17)

~efi = / – fiz (18)
{1 “

Using definition (18) in (14) and (15) provides substantially

more compact expressions for 174 and H,,

1

[

iK 1 t9E2
Hd= — —-—

dEz
+—

ipefi p r 6’+ a- 1

A. Ez and H+ Fields in the Inner Disk

(19)

(20)

The inhomogeneous circular surface is broken up into
one inner disk centered at r = O, and N annuli, each
annulus labeled by index i. To be consistent in labeling

notation, the inner disk is labeled with i = O. The disk,

and each annulus region is sourceless, so that the homoge-
neous Helmholtz equation (16) holds. The solution to (16) in
cylindrical coordinates is well known to be Bessel functions
multiplied by azimuthal circular harmonics. For the problem at

hand, azimuthal symmetry exists, requiring that the separable
circular harmonics be of type {exp(’inqi) }, for any integer n.
Helmholtz equation (16) will therefore yield Bessel functions
of integer order. Because the inner disk contains the point
r = O, the only Bessel function to be well behaved, not
possessing a singularity, will be the Bessel function of the
first kind, .l~. Therefore the total electric field Ezo in the disk
must be a superposition-of

E.no = anoJn(kefi,or)e’no (21)

giving

u
rL=—cm

Likewise for the magnetic

m

an~,~n(kefi,or) e’n+. (22)

fields, invoking (19)

[

71,tio 1

x k.ff.o J:(keff.07-) –
1

~ ;J.(k.ff,or-) e’nd.

(23)

To standardize the notation, abbreviate, and make transparent
what is happening in the recursion process itself, a few
definitions are made (the upper index on C is the component,
and the lower indices are azimuthal mode number, field type,

Bessel function type, and ring index)

In these three definition equations, the general disk or annulus
location index i has been used as the last index on the Cn..i
and Cnk.t, on the material tensor element parameters LG
and N1, and on the effective propagation constant k.ff,, and

permeability #,fi,,. For the inner disk, the index in (24)-(26)
is merely z = O, allowing us to rewrite (22) and (23) as

(27)

(28)

B. Fields in the Annuli

Because an annulus does not include the origin, a superpo-

sition of any two linearly independent Bessel functions will be
required to construct the radial part of the separable solution
to (16). The electric field is therefore

m

Ezi = ~ [amzJn(&ff, ,r) + bn,Nm (lteff, ,r)]ezno;
n=—m

i=l,a ,..., N. (29)

As in (24), let us define

so that (29) can be rewritten in the more abbreviated and

transparent form
m

Ezi = ~ [a~iC.,,.i(~) + hc~.~t(~)]e’no;
%.—CC

z=1,2, . . ..N. (31)

For the 11~, field component, referring to (19)

n.—cc L

T1. -cm L

Using the coefficient definition in (26) for the a~i factor and

the additional definition

Hdi can be expressed in the much more compact form
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C. Boundary Conditions and the Disk—First AIIWIUS Interface

There are three distinct types of boundary condition inter-

faces. The first boundary condition type is at the disk—first

annulus interface. This interface must match the inner disk,

which contains a potential singularity at r = O which has

been specially excluded, to the first annulus which contains

two linearly independent Bessel functions out of which the

E, field is constructed.
Once the matching has been completed at this first in-

terface, the field information can be pulled through to the
next interface, and the matching procedure repeated. Thus,

each internal interface due to two adjacent annuli involves the

same matching process. These internal interfaces constitute the
second type of boundary condition. If there are N annuli, then

there will be exactly N, = N – 1 interfaces of the second type.
The third type of boundary condition occurs at the interface

between the last annulus, the i = N annulus, and the external

part of the circulator geometry. This is where the last annulus

or ring abuts or touches either an ideally imposed magnetic

wall, which approximately expresses the transition between the
ferrite material and the outside dielectric (air or a surrounding

dielectric), or the transition ports taking energy into or out

of the circulator. For a three-port circulator, these ports are

referred to as the input port, the output port, and the isolated

port. Normal practical design strategy attempts to minimize the

exiting signal from the isolated port and maximize the exiting

signal from the output port.
There will be a total of N, + 2 interracial boundary condi-

tions, all of the internal ones plus one disk-annulus interface

and one Nth annulus-outside interface. The inner disk has
radius r.. Each annulus has radius r,, measured from its center.

The width of each annulus is Ari = Tio – ‘r,l, where the

subscript “0” or “I” indicates outer or inner radius of the ith

annulus.
It is sufficient to apply boundary constraints on either the

(B., D.) normal pair or the (Et, H,) tangential pair. We

choose the second pair as it is easily applied. For the first

type of interracial boundary condition

E,o(T = rO) = l?,~(r = TII) (35)

Iloo(r = ro) = ~d~(r = rlr). (36)

Using (27) and (31 ) for the Es constraint, (35) becomes
,m

n=-—
m

n=-%

Utilizing (28) and (34) for the H@ constraint, (36) becomes

By the orthogonality of the azimuthal harmonics on (–m, T),

these equations may be written down for each individual nth

harmonic

Here the argument information of the C coefficients has been
compressed into a single added subscript index D which

denotes radial evaluation at the disk radius D = r. = r 11.
Solution of (39) yields for the 1st annulus field coefficients
anl and hnl

lCntUOD Cfmek,D I

cnhu~D c,,hblD

IcnealD ~neaoll I
cnha~D cr,h,,oD

b,,l=
Icne.lD Cnehlfl I anon

(40a)

(40b)

c.,ha~~ c.hb~D

These expressions mciy be considerably abbrevitited by defin-

ing the disk-to-annulus coupling numerator factors

(41 a)

(41b)

and the determinant D, providing the information in the ith
annulus

D, = cnea’-4 “neb’A
~nho LA cnhbt.4

(42)

In (42). subscript combination ZA denotes a radial evaluation
at the ith annulus inner radius /,1. that is

?’L.+ = ?_LI = 7~ – Ar,/2. (43)

Thus, we may now write am1 and b,,l as

(44a)

(44b)

D. Intra-Annuli Boundary Conditions

The (Et. Ht ) tangential pair is used to match between two
adjacent annuli. Following forms (35) and (36)

E., (7- == ‘7’,0)= E=(L+l)(r = ~(1+1)~) (45)

ff4,(T = r,o) = ~d(i+l)(r = ~(t+l)~). (46)

Invoking the annuli Ez field expression in (31), and inserting
it into (45)

Similarly, for Ho recalling (34), and inserting into (46)
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These two equations may be compressed by defining the fifth

index on the C coefficients to be the outer radius rio of the

ith annulus or the inner radius ?_(i+1)1 of the (i+ 1)th annulus.

This so defined radius is precisely the value used to evaluate

the radial arguments of the C coefficients

anLCnea~~ + bnicneb~~

—
— ~n(i+l)cnea(i+l)~ + bn(i+l)cneb(i+l)i (49a)

anjc~ha?% + bnic!hbtt

— 4— %t(2+l)cn~a(i+l)i + bn(t+l)%b(i+l)i” (49b)

This set of equations can be solved for the (i + l)th annulus
field coefficients an(~+l) and b~(t+l)

lLn,,, Cneb(,+l), I

fh(,+g =
l~nhzt Ghb(,+;)t I

(50a)
Cne. (,+1), Cneb(i+l)i

Cnha(,+l)i Cnhb(i+l)i

Here, left-hand equation information about the previous inner
ith annulus is stored in

The fifth index on the C coefficients represents the outer radius

rto of the inner annulus i or the inner radius T(i+l)r of the

outer annulus (i + 1).

Formulas (50) can be somewhat simplified by recognizing
that the denominators have already been defined in (42), The
fifth index A has now been replaced by the subscript i denoting

the inner radius T(,+l)I of the outer annuhs (i + 1) or the

outer radius r,o of the inner annulus i, Thus, the fifth index
represents the interracial radius of the last two indices in the
new notation and so is a unique specification, Using the more

generally constructed determinant

cnea(t+I)t Cneb(t+l)z

“+1 = OdLa(t+ l)* Cnhb(z+l)z
(52)

the annulus field coefficients a~(,+l) and bn(,+1) look like

1 Ln,,% Cneb(z+l)t

a“(’+l) = ~ Lnhtt Cnhb(t+ l)!
(53a)

1 Cn.a(,+l), Lnetz .
h(i+l) = ~

Cn},a(,+l), -h,,
(53b)

These expressions implicitly contain forward propagating re-
cursion information from the previous annulus in the L~e,, and
Lnh,, terms. This information will now be explicitly inserted
from (51) into (53), factoring out the previous annulus field

coefficients, so that explicit forward propagating recursion

formulas result

an(i+l)
1

- ~{[cnhb(i+l)icneaii - Cneb(i+l)icnhaii] ani—

t

bn(z+l)

1—_

D,+l

+ [Cnhb(t+l)tcnebtt - cneb(,+~),cn~~,z]bnl}

(54a)

{[C~,~(,+l)tCnhaii - cnh~(i+l)icnr.iil%i

+ [Cn.a(i+l)icnhbtt – cn~a(i+l)icnebzz] bnt}.

(54b)

Each term within the square brackets in (54a) and (54b) is a

connection term linking the (i + 1) and i annuli. Therefore
we define them as

With these assignments, the recursion expressions (54)

1
—{a.(i+ l,i)a~, +/3~(i+ l,i)b~,}

“(’+1) = Di+l

‘{~b(i+ l,i)a~, +~b(’i+ I,i)bni}.b~(~+l) = D,+l

(55a)

(55b)

(55C)

(55d)

are

(56a)

(56b)

Since the coupling terms aP(i + 1, i) and &(i + 1, i),

P = a, b, can be determined once the material parameters of
the different rings are specified and the ring geometries set, the
field coefficients of any succeeding ring can be found by (56).

Starting from the first annulus i = 1, (56) maybe successively

applied (recursively) until the outermost (last) i = N annulus
is reached. The iterative process must be repeated N – 1 times
for “N annuli, taking us from the field coefficient information in
the innermost first annulus a,,l and b~l, to the field coefficient
information in the last annulus am~ and b~iv.

E. IVth Annulus-Outer Region Boundary Conditions

The progression of annuli may be effectively truncated at

the r = R boundary of the device where the last z = N
annulus ends and the outer region of the device begins. It
is here that ports exit from the device. It is also here that
the device transitions from a ferrite medium to a dielectric
medium. If one wishes to stop the 2-D field analysis at r = R,

then approximating boundary conditions must be applied here
to model the effect of the ports and the change at the other
contour regions where the device becomes dielectric. The

first requirement is met by imposing constraints typical of
those describing a circulator-microstrip line (or stripline) in-
terface. The second requirement is met by assuming magnetic
wall conditions where the device transitions from ferrite to
dielectric.

At the perimeter r = R, the boundary condition on H@

consistent with both requirements is a Dirichlet boundary
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condition (BC) Because all the quantities are known on the right-hand side of

An arbitrary function like that specified in (57) can be repre-

sented by a one-dimensional Fourier series over the appropri-
ate domain (–m, z)

Cx

H$er(R, @) = ~ A~,elm@. (58)

Multiplying both sides of(58) by exp( – in ~), integrating over
the domain, and using the orthogonality property

(64), ar,o is determined. Once ano is determined, all the fields
in all the annuli are known by the very nature of the recursion
process. In this way, the driving or forcing function contained
in (57) and implicitly stored in An, leads to the fields to be
specified. That relationship means that we can now find the
Green’s functions relating forcing contour field H,jc (R, ~) to

E=(r, #). Thus, we will be finding the various components of

the recursive Green’s functions.

111, RECURSIVE GREEN’S FUNCTIONS

A. Within the Disk

The cross- (or indirect) coupling Green’s function relating
forcing contour field H@,(R, #) to Ez (r, #) will be found here.
First the fields will be examined within the disk, then the fields

on the outermost annulus-exterior interface.

Invoking (64), and putting ano into (27) and (28) gives the

yields the n,th coefficient of the expansion
three field components at any (r, ~) location within the disk

An = &
/

‘ H~er(R, ~)e-’n~d~. ~60) EzO(r, #) = ~
A,,

4an~(recur)C$hO~R + h.~(recur)G’~,k~~R
—n rL=—tx

These coefficients must be precisely the same as those found x ~TLe(iO(r)e’”o (65)

in the Bessel–Fourier expansion provided for the H@ field To find the Green’s function form of solution, the implicit
solution for the last annulus in (34). Setting t = N, and T = R forcing function information in .4,, must be made explicit

by replacing A,, with (60), properly extracting the forcing
H~N = ~ [anjvCfhu,v(R) + kVCfhbN(R)] e’no. (61) field from the integral. Identify NT,P contour regions where

,L=—m ~~ (R., 4) is nonzero

Equating Hp’ (R. #) and H@N, and using the orthogonality Nr,P

property of the Fourier harmonic functions. we find that H:”’ (R: 4) = ~ H:’’(R. Oq)fi(d - &,) A&. (66)

& = ~rb@}LuN(R) + hN~j,,N(R)
g=l

Inserting (66) into (60) and reversing the order of summations
= unJ&’:~,,~~ + b,,N~:k6N0 and integrations gives
—– CkN~~/tuN~ + bnlVc$hNR (62]

,4. = & ‘~ /“ HY(R #q)~(@–@y)A#qewhere the second equality is consistent with earlier convention “ndd@. (67)

to attribute the fifth index “0” to the fourth index i = N
q=l –~

thereby assigning the radius for argument evaluation of the C Performing the integration gives

coefficient as ‘/”IV~and where the third equality simply regis-
ters explicitly the radius for argument evaluation as 7 = R. A.=;

Examination of (44) and the linear mapping process implied
by (56) indicates that a,,~, and bnN can be written as

Returning to (65),

a,, IV = an,~(recur)ar,fl (63a)
~zo(~, ~)

b ~N = bn~(recur)o,,o. (63b) .’=-=
1-

q=l

and substituting for An

Here a. N(recur) and bnN(reCUr) denote the quantities obtained
by applying forward recursion formulas (56) N – 1 times
starting with the formulas (44) and at the end factoring out
the single factors amo from the final a. IVand bn,V results. The
recipe for getting u.N (recur) and br,N (recur) requires amo to be
formally set to unity in (44) and the recursion process executed
as described. Equations (63) are extremely important relations.
Inserting them into (62 ) and solving for a .() gives

An
ano = (64)

a~jv(recur)c~~a~~ + bnN(recur)@j,hNR

Reversing the order of Fourier azimuthal harmonic summation
and the port (discretization) summation produces

x =Ln4qe1n4HiF(R$4’q)&if. (70)
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This can be considerably streamlined by defining the constant Equation (78) becomes

denominator term to be
EzO(r, ~)

TnjV = UnN(recur)Cd~~ajl,r~ + bnN(l-ecur)c:hbNR (71)

and placing it into (70) = ~Gi%(,$;R>$q)H~.(R4q)A4q
q=l

Ezo(r, @) N;rv

I

q5. +A&/2

=;? 2 c;j’)’-’”’’n’HPr(Rdq)~dqdq

+ ~ HO,(R, d.) G#Jr, $: R, g$’)d~’,
U=l d.–&$./2

q=l R=–w (81a)

(72)
Our choice will be to let N~,p >1 and ~,& = O or AL& = O

From the discussion at the beginning of Section II, we can and N$,n > 1 noting that the null value indicates that no sum
recognize

and perform the

occurs [26]. The first selection allows for infinitesimal ports
and the second continuous ports. Therefore, we find for the

II@,(R, gf) = HP(R, 4,) (73) continuous port case that

limiting process N&

limit A@q ~ O. (74)

When these two activities are completed, the z~ cross-coupling

Green’s function element arises from (72) as

The electric field J!3zo(r, ~) is obtained from (75) by mul-
tiplying the Green’s function by HP (R, @q) then applying

to this product the discretization operator obtained from the
integral operator by the assignment

(76)

That is. (4) in integral form

I&)(?-,#) =
/

(77)T G:~(r, ~; R, #’)H4c(R, q5’)dqS
—T

now reads in discretized form

,N=,n

,=1

It may be desirable to consider the case where the forcing

contour field H4C(R, ~) is treated as constant over some
regions, Therefore we will consider N+,P port regions where
H4C(R, ~) can be removed from the integrations in (77). This
will require a generalization of the integral-to-discretization
operator mapping provided in (76)

There are now a total of NT,P port regions, some of which are
discretized into elements and some of which are continuously
treated

defining a modified Green’s function

For the continuous port the expression was made to look like
the discretlzed port expression by defining a modified definite
integral which is normalized to the finite angular width of the
port region A$V

.

where the definite integral evaluation is

(83)

B. On the Outer Annulus-Port Interj%ce

Due to the separable nature of the governing equation (16),
and the resulting sourceless solution being the product of
radial and azimuthal functions, the Green’s function evaluated
on the contour r = R simplifies significantly. The Green’s

function and the fields found as a result are of importance in
relating the solution found inside the ferrite circulator domain
on O < r < R and —x < q5 < T to the outside structure,
namely the interfacing ports.

If we assign a notation similar to that found in (71) to the
radial numerator factor, developed from (31 ) with z = N

VYN = %N(recur)cneaN (R) + bnp/(recur)Cn.&iV(R) (85)

with upgraded notation being employed here. Furthermore, let

us define normalized quantities

(86)

Here, p=,z, r,or~; q=eorh.
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With the definitions (85) and (86), the field and recursive
Green’s function can be stated as

where

and the modified expression

IV. SCATTERING PARAMETERS

FOR A THREE-PORT CIRCULATOR

(87)

(88)

(89)

Here we will consider a particularly simple case where
the circulator either has discretized ports (actually very small
as to appear infinitesimal) or continuous ports but not both.
Furthermore, if discretized ports are treated, then only one
element per port is allowed. In effect, what that means is that
the angular extent of the ports is considered so small that a

single element is sufficient to approximate the port contour.
The general case for many elements is treated elsewhere [26].
Thus, (87,) becomes, if we limit the device to three ports,
making N~,P = N$,I, = 3

{

G’” -(R, q5;R,, @q): discretized
@~~(R. qb;R, #q) = -~Hh

GE$~(R, ~; R, #q); continuous.

(91)

If we absorb the azimuthal spread into the Green’s function
by defining a modified form

where the understood indices and arguments have been
dropped, (90) can be expanded as

Now evaluate (93) at each of the ports, y = u, b, c, labeled
counterclockwise, and simplify the notation for E,Av (R, 4) to
E! by setting $h = ti~

Let us make a number of prachcal assumptions which will
further simplify the coming analysis. Assume that the input
port a is subject to reflections from the transmission line-
circulator interface. Therefore s 11 is nonzero and the match
is imperfect for port a. But assume that the other two ports,

the output port b and the isolated port c, are perfectly matched
to the transmission lines. These assumptions translate into the
relationships

where the subscript indicates an inward or outward propa-

gating wave along the transmission line in relation to the
circulator. Each transmission line is characterized by a wave
impedance. Consequently

‘;[in)
—=(.
Ha(in)

(98a)

(98b)

(98c)

Next. we define the s-parameters which are to be determined

by this process of analysis

E: = (1+ Sm)E:(ln] [99a)

H$ = (1 – ‘ll)~~(,n) (99b)

E~(oUt)

’21 = E~(in)

E:(out),—,
’31– E:(,I,]

(100)

(101)

These last formulas (95)–(99) must be combined to utilize
only the total fields in the transmission lines because at the
circulator-transmission line interfaces we relate the z and 4
components by interracial tangential boundary conditions

E!!(cir) = E~(TL); (1 02a)

~~(cir) = ZZ~(TL) (102b)

where formulas (102) rebate total fields. When this is done

(103a)

E“
S31 = (1 + Sll)f (103C)

(104a)

(104b)
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Make theinput field 13~(in) = land putitinto (99a) so that

the H-field is determined in terms of the input s-parameter in
(103a). We obtain

E; = (1 +.sll) (105)

(aHa =1

1–s11 “
(106)

Combining these two equations eliminates S1l

E:=2– (aHa. (107)

Now using (104) and (107), remove the E-field unknowns
from (94), obtaining a simultaneous set of three equations in
three unknown H-fields

2 – <.Ha = Ga. H. + GabHb + G..H.

–<bHb = Gb.H. + G’mHb i- GbcHc

–<.H. = GcaHa + Gct,Hb + G..Hc

Rewriting (108)

(G.. + <a)Ha + GabHb + GucHc= 2
GbaHa+ (Gbb+ <b)Hb+ GbcHc= O

GmHa + G,bHb + (G,, + <c)Hc = 0.

The solution for the H-fields is

2 Gab
HO, = ~ () (Gh~ + <b)

~ o G,b

= ;[(Gw+h)(Gcc
P

G..
(&

(G.. + <c)

+ <c)– Gk&’et)]

G
G;:

(G.. + (.)

—. - ; [Gtm(G’cc+ <c)- GtxGca]
P

where the H-field system determinant is

(G.. + <u) G<,.
D, = Gh. (Gb~~ <b) G’b. .

Gca GLb (G.. + <c)

(108a)

(108b)

(108c)

(109a)

(109b)

(109C)

(llOa)

(llOb)

(110C)

(111)

The H-fields have been found and from them the s-parameters
can be obtained also. Equation (106) gives

s1l = l– <oHa (l12a)

.sz~ = E: = —<bHb (l12b)

S31 = E; = –(CHC (112C)

where the latter two formulas came from using (104) and
(105) in (103b) and (103c). Obviously, the E-fields have been
obtained by this process too.

V. CONTRIBUTIONS TO PERMEABILITY

TENSOR AND DIELECTRIC CONSTANT

The work here treats radial variation of the ferrite material

parameters in circularly shaped stripline or microstrip circu-
lators. The “circular” case is important not only because it is
easier to solve than most other shapes, but also because nearly

all quasi-TEM microwave circulators made today use round
ferrite pucks. It is suspected that wider bandwidth circulators

can result from the use of multiple ferrite material rings [27]

and possibly from bias field shaping.
Fig. 1 shows a circulator with a central disk (region O) and

four annuli (regions 1-4). Each region shown in Fig. 1 may
represent a different ferrite material; or it may simply represent

a computational region in which the material is the same as its
neighbors but the demagnetizing factor andlor the applied bias
field is different from its neighbors. In either case, the variation
of any or all of these three elements (ferrite material type,
applied field, and demagnetizing factor) is mathematically
lumped into the permeability tensor, (12), in Section II. Also,
any radial variation of the dielectric constant and loss tangent
with varying ferrite materials is mathematically lumped into

the effective propagation constant, (17), in Section II, by way
of the complex dielectric constant.

In anisotropic ferromagnetic materials, a relative perme-

ability different from unity arises from the tensor magnetic
susceptibility, X, of tbe material, which relates the H-fields to
the magnetization, i’kl = ~11. The relative permeability, which
relates l?-fields to H-fields, 1? = jlEl, is

‘= ’+’=l : l+[r ‘~’y !

[

1+ x.. —ijyzyo
—— Zxyz I+,xyy o

0 01 I

[1

P- –il’io
—— it$po. (113)

001

The susceptibility terms are complex. The complex ~ = p’ –

j/J” and ~ = # – j~” are rj permeability terms and the unity
term is the DC permeability affecting the bias field, where
in rectangular coordinates the bias field is in the z-direction.

Expressions for the real and imaginary parts of p and K are
conveniently developed from [28] and (11 3)

LLJmoJ(J[cLJ{– LL7(l– (&)]
“ = 1 + [w; - (JY(l + a!;)]z + 4w2w;a&

W,nwam[u: + W’(1 + a:)]
u“ = [w? _ “2(1+ a!:)]z + 4w%J;~L

–Wmw[w; – W’(1 + a~)]

“ = [Wg– J(1 + O&)]z + 4w2w;c&

(114)

–2wmwow20!m
/$” =

[w? – W2(1 + a~)]z + 4w2w~a:”

In these expressions WW= –TM = –Tkfs in which M, is the
saturation magnetization, wo = –vH, in which H, is the inter-
nal bias field, w is the actual operating radian frequency, and
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a,. ]s the damping term, related to magnetic linewidth AH
by on, = – AHT/2w, and y is the gyromagnetic ratio whose
value in MKS units is –2.2126 x 105 (rad/s)/(ampturns/m).

Also, the internal bias field is equal to the external ~pplied

field, H ~PP, minus the product of the demagnetizing factor,

Nd = N,.. and the saturation magnetization, Al., giving

H, = Hap*, – N::Af$ when written in the format consistent
with MKS-unit thinking. In this equation, AZ and H are

both in ampturns/m. N.= describes the z component of the
demagnetizing field when the sample is magnetized in the z
direction. For those more familiar with Gaussian-unit thinking.
this equation would read H, = H.pp – N:, &TA!13, where
%L1, is in Gauss and H is in Oersteds. N,, varies from

point-to-point in the ferrite puck and has a value between zero
and one. A first-order estimate of the magnitude and shape
of N,l in a uniform circular ferrite puck is given in [29],
In practice, IH.PP I > N,z * 47rAJ, must be maintained at all

points in all the ferrite material rings; this is because the initial
assumption in the derivation of the equation of motion of the
total magnetization M = ~Af, + mei”t, in the presence of a
small r,f magnetization m, is that the material be saturated.
This implies a steady-state, z-directed rmgnetization 11= equal
to the saturation magnetization hf., created by an internal bias
field in the same direction at all points.

In summary, the basic terms which can vary from point-to-

point (or ring-to-ring for the case here) are M,, Happ, Nzz,

and AH, accounted for in the permeability y tensor; and the
ferrite dielectric constant and loss tangent, accounted for in
the complex dielectric constant. An additional constraint is
H, > 0 everywhere in the ferrite material.

VI. NUMERICAL RESULTS

The information in Sections II, III, and IV has been used

to create a computer code for calculating the performance of
three-port microstrip and stripline circulators. It is not obvious
from a cursory comparison of the mathematical expressions
here and those in Bosma [18], [19], but the expressions here
reduce exactly to the Bosma result for the radially uniform
case. In (89) above, the Green’s function consists of three
factors: e’mo which is related to a specific E. location, ~~
which is related to a specific perimeter H4 location and port

angle, and ~~fi. The product ~~e’n~ involves the perimeter
boundary and is the same for either a uniform circulator puck
(as in Bosma) or one with radial variations. Therefore, to
determine analytical equivalence, it is only necessary to show

that the solution of ~~fi. for a single region be the same as that
part of the Bosma solution. By using an inner disk of radius
r. and one outer annulus of outside radius rl, and then setting
rl = r., with the material parameters of the outer annulus the
same as those of the inner disk, the case of a uniform puck
can be derived. From (86) above, for one annulus

?nl
Vnl = ~

n

?rll = ‘.1 (recur) cn..lC) + k (recur)c.,blo

Al = wl(recur)~fnha10 + hl (recur) CT1hb10

Alol C.haoo cnhb,~\
a.l(recur) = —

D1 – Cne.lr C,,,hlI

~nb,,lI C,,hblI

Iwo, pnhcm Cn.llaoo I
bn~(recur) = —

D1 = cnp,,lI C~.b~l

Cr,hdI Cr,hblI

(115)

In these expressions, the following relationships apply. They
are written out to help clarify the subscript meanings

C,,ea10 = JrL(keff,lr~)

c~,b~o = Nn(itefi,lrl)

[
Cnh(,II = CI keff,l.l~(k.ff,lro) – 3J(kefi,1’ro)

plro 1

For the special case of ~1 = r. = r, /tefi,l = liem,o =

Lff, rI = co = c, and using x = k,ffr, then JW02 = 0, Also,
Afol contains the product of the Wronskian (discussed in [30])

W{ Jn(z), N,,(z)} == J,L(z)N; (x)– Nn(z)J; (x)
= 2/(7rJ)

and a nonzero constant, so that

%w~o~eff J,,(x)
7.1 =

A@
[() 1“

(117)
JI ~ – &Jn(:L)
, 71

Using Bosma’s effective wave impedance, <em = UJji,Opeff/

keff, 7,,1 becomes

This is exactly the equivalent part of the Bosma [18] double-
sided summation expression (60) which leads directly to the
single-sided summation in his expression (61).

The code here has been tested for a circulator with a single
region of ferrite material and for a multiregion circulator in
which the ferrite materials are all alike. The computed results
were identical when the material, bias field, demagnetizing
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conditions, and outer radius were the same for the two cases.
Also the new code gave computed results on uniform cases
which were exactly the same as those given by a code
developed earlier atNRL [6], [7], basedon [18], [19], which

wasonly forradially uniform cases. Thevalidity of the earlier

NRL code has been put on firm ground with good comparisons

with other calculated results and with experimental data [6],

[7], so the new code is equally valid.
The exact agreement between the Bosma approach and that

described here requires the use of the same definition for E, at
the circulator ports in the two approaches. Bosma derived and
used an expression for the average electric field in [19] for a
strip transmission line, while the derivation here uses the field
at the center of the strip, whether stripline or microstrip. The

difference between the two is that, in (84) above, an additional
multiplying term of

‘in(nF)/(n%)(119)

appears in the Bosma result for ~~ when average ,?3=field is
used, which then appears in the summation of terms in the
recursive Green’s function in (82). The difference between
the two in the final calculated performance is not great, but,
for exact agreement with Bosma’s original intention (1 19),
must be incorporated. It is not known at this time whether

the use of average field or center field gives better agreement
with laboratory measured results. The numerical results which

follow were based on the use of the center value of E. at

the ports. The microstrip circulator used for the reference
numerical calculations is described in Fig. 2. There is a
single quarter-wavelength matching transformer included in
the calculations.

In the following figures, the reference calculated perfor-
mance shown in Fig. 3 is with uniform feriite material, with
NZZ = 1 throughout, and with uniform external applied field

of 1780 Oe. Fig. 4 gives the calculated performance when N..
has the values calculated from [29], and shown in Fig. 5, with

other parameters unchanged. This curve was approximated

using five rings with five values of N.., averaged in each
ring. Fig. 6 gives the calculated performance when the external
applied field is allowed to vary as shown in Fig. 7. Again
a five-ring approximation was used, with other parameters
the same as for the reference case in each ring. Fig. 8 gives
the calculated performance when two different ferrite material
rings are used, with the inner ring having half the radius of
the outer ring. Multiple-femite-ring circulators are of interest,
in general, because of their potential for wide bandwidth, as
suggested in [31]. The inner ring is Trans-Tech G-113 yttrium
iron garnet, described in Fig. 2, and the outer ring is Trans-
Tech G-500 yttrium-gadolinium-aluminum iron garnet. The
pertinent characteristics of the G-500 are: 4TJ4!. = 550 G,
Linewidth = 65 Oe, Dielectric Constant = 14.4, and Loss
Tan = 0.0002, and all of these values were used in the
outer ring, Although the radial variations cause changes in
the circulator performance, it is interesting to see that major
deterioration does not occur for the fairly realistic cases studied
here. These results, however, should not be extrapolated very
far. Applications vary so widely that these results may not be

W2

WI

“‘I
L

R z 0.279cm StBSTRATE : Trana-Tech Gt 13

W, . 0.096cm 4X M= ❑ 1760 G AH ❑ 45 Oe,

L = 0.241 cm Er = 15.0, Tarr6 z .0002

W2 s 0.030cm (50 ohms) Substrate thickness ❑ 0.051cm

Three Way Symmetry Conductor Thictmeaa = 0.0005c m

Fig. 2. Top view of the circulator used in the calculations. It has a quarter
wave transformer at each port, with WI = 0.096 cm and L = 0.241 cm.
Other values are wz = 0.030 cm for 50 ohm lines and outside radius of
magnetized puck is R = 0.279 cm. The substrate is a Trans-Tech G113
with a 4tTMs = 1780 G, AH = 45 Oe, e, = 15.0, and tan~ = 0.0002.
Substrate thickness H = 0.051 cm, and conductor thickness = 0.0005 cm.

REFERENCE-UNIFORM

-20 Illlilli

6 7 8 9 10 11

FREQ GHZ

Fig. 3. S-parameters SI I (input), SSI (isolated) and SZI (output) for frequency

~ = 6-11 GHz. These calcu~dted s-parameters for a uniform material
distribution will act as reference vahres for the following figures.

at all like what happens at much higher or lower frequencies
and at much wider or narrower bandwidths.

The time required for a single frequency calculation, for
~ = –9 to +9 in (89), is shown in Fig. 9. In [7] there is

some discussion about the choice of n, but 9 is at the upper
limit of the values typically used and, therefore, at the upper
limit of calculation time. The Macintosh Quadra 650 results

are of the same order as for a 486-type desktop computer.
Work station environment is considerably faster. The single-
region calculation is handled slightly differently from those
for two or more regions, which explains its deviation from the
rest of the curve.

VII. CONCLUSION

With the work presented here it is now possible to obtain
information quickly, easily, and inexpensively about the ef-
fects of nonuniform demagnetizing factor or bias field, and
bandwidth effects of using multiple ferrite rings of different
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Fig. 7. Variation of ~~PP in the radial direction, used to generate Fig. 6.Fig. 4. S-parameters calculated for nonuniform IV,= but with other geo-
metric and physical parameters unchanged from Fig. 3. The nonuniform -N: z

distribution is given in Fig. 5. FERRITE NON-UNIFORM
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Radius , r (cm) Fig. 8. S-parameters calculated for nonuniform 47rM’, =: 1780 G (inner
disk), 550 G (annulus). Inner disk material is Trans-Tech G-113 yttrium iron
garnet, and outer annuhrs material is G-500 yttrium gadolinium aluminum
iron garnet with AH = 65 Oe, s, = 14.4, tan b = 0.0002.

F]g. 5. Variation of .NZZ in tbe radial direction, used to generate Fig. 4.

H,,D NON-UNIFORM
CALCULATION TIMEo

-5 ‘tim!-dm

-15

-20 I I I 1 ~

6 7 8 9 10 11
FREQ GHZ o 2 46 8 10 12

NUMBER OF REGIONS
Fig. 6. S-parameters calculated for a nonuniformly applied external ~~PP
field. Fig. 9. Computation time of recursive calculation on a Macintosh Quadra

650 against the number of regions. The inner disk is counted as the first
region, with outlying annuli added afterward.materials. It is a major advantage that only a modest computer

platform is required to get these answers.

Here we developed a 2-D recursive Green’s function with

elements suitable for determining the electric field compo-
nent E. anywhere within the circulator. The problem was

inhomogeneous because of variations in the applied magnetic
,, and demagnetization factorfield Happ, magnetization 4~ M

IVd. All magnetic inhomogeneity effects can be put into the
frequency dependent tensor elements of the anisotropic perme-
ability tensor ,h. The recursive nature of the Green’s function

is a reflection of the inhomogeneous region being broken up

into one inner disk containing a singularity and N annuli. Ports

were separated into discretized ports with elements or contin-

uous ports located at arbitrary azimuthal @ and arbitrary line

widths. From the Green’s function, s-parameters were found

for a simple case of a three-port ferrite circulator. Numerical

results have been presented for the case of symmetrically

disposed ports of equal widths, taking into account the radial
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inhomogeneities. Studies of breaking up the area into 1, 2,
and5 annuli were undertaken to treat specific inhotnogeneous
problems. A computer code which evaluates the recursive

Green’s function was shown to be very efficient and to have

no convergence problems.
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